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CC04PARISON OF BOILER t+EED PUMPS FM CESIUM MD PMASS ILAA
•	 FAMINE CYCLE SYSTEM

H. C. Young
D. L. Clark
A. G. Cri ndell

ABSTRA ( T

A study was made of the electromagnetic pump and the electric motor
driven (canned rotor) and free turbine driven centrifugal pumps for the
boiler feed duty in Rankine cycle systems having an output of 300 kve
with cesium oi • potassium as the working fluid. The polyphase helical
Induction pump was chosen to represent the elect romngnetic pumps. The
weight of the basic pump and the increase in weight of the Rankine cy-
cle system (weight penalty) required to supply pump power and control
requirements were estimated for each pump. A discussion is presented
of some of the unique problems %nd design considerations associated
with each pump such as start-up, control, bearing materials, and aux-
iliary equipment. Design precepts and preliminary design data for each
of the pumps are presented.

For potassium boiler feed se rviee the weight of the basic pump and
the toted weight of basic pump plus the weight penalty, respectively,
for the helical induction pump, the canned rotor pump, and the free tur-
bine driven pump are 397 and 660 lb, 160 and 347 lb, and 72 and 135 lb,

u	 respectively. The corresponding weights for the cesium boiler feed
pumps are 1430 and 2292 lb, 274 and 697 lb, and 35 and 174 lb.

While weight is an important criterion in selecting a boiler feed
pip, reliability appears to be even more important. Unfortunately,
sufficient long-term operating experience has not been accumulated vith
any of the boiler feed pumps considered to prove reliability for the
20,000 hr or more required. An appraisal of reliability should include
not only the actual pump but also the auxiliary equipment required to
sustain,,  and control pump operation. The helical induction pump has no
moving parts and can be built so that it is relatively free of thermal
stress problems, but it is dependent on a chain of paver supply, switch-
gear, and control equipment and requires a cooling circuit. The free
turbine driv!-n pump requires little or no auxiliary equipment, but it
inherently requires mr—ing parts and bearings. The canned rotor pump
is the most complex requiring both liquid metal bearings and electrical
power supply and controls and a cooling circuit. On the bases of low
weight and overall simplicity, the free turbine driven pump would appear
to be the best choice to supply the boiler feed requirements of the
reference design pankine cycle systems.

(Continued)

K
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ABSTRACT (continued)

Electromagnetic pumps were chosen for the reactor circuit (lithium)
and the radiator circuits (NnK). The flat linear induction pump (FLIP)
wa3 selected for the reactor circuit, and the annular induction pump
(AIP) was selected for the radiator circuit. The use of turbine driven
p,;m;s is not practicable for these applications.

I NTRODOCTION

71-.is repx)rt presents a comparison of the electromagnetic pump and

the electric motor driven (canned rotor) and free turbine driven cen-

tril"Wal pumps for use in P.ankine cycle space power plants in which

cesium or potassium is used as the working fluid. 71ie work is a part

cf an analytical comparison of cesium and potassium as working fluids

for Rankine cycle space power plants conducted by the Oak Ridge National

Laboratory for the National Aeronautics and Space Administration.

Typical boiler feed pump requirerwnts for 300 kwe Rankine cycle

systems using potassium and c,^slum as the working fluids were selected

from a cc4npanion report s that p:esents a series of thermodynami^ cycle

an.3lyses and reference designs for cesium and potassium turbine-generator

units. Me efficiencies of the power turbine and generator from that

r^.prjrt were used to compute the equivalent generator output associated

with tht vapor diverted to the turbine driven boiler feed pump. The

varioub boiler feed pumps were compared with respect to the basic pump

wtlght pl-,.s the weight penalties associated with the electrical power

or t}x equivalent power consumed for pump operation, control, and cool-

ing, and the weight of batteries needed for starting.

While the major portion of this report is devoted to boiler feed

a section is also included on the preliminary design of a lithi-

um pump for the reactor coolant system and the NaK pump for the heat

r^_ie^.tion eystems that are coupled to the Rankine cycle systems in the

reference power systems.

W
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BOILER F'.'D PUMP REQU I RF?^'.^NM

The design requirements for the cesium and potassi= boiler feed

pumps are listed in Table 1. It was assumed that the boiler feed pump

provides both the boiler feed and the lubricant flow to the bearings in

the turbine generator and in the canned rotor and turbine driven cen-

trifugal pumps. The pump capacity was increased over the design con-

deneate flow rate by an additionf-I 25% and 12% for the centrifugal and

electromagnetic pumps, respectively.

The additional flow would drive a Set pump to scavenge the con-

denser and boost the pump inlet pressure sufficiently to suppress cavi-

tation. The possibility of suppressing pump cavitation soles; by sub-

cooling the cc,ndensate upstream of the pump suction was studied, but it

was concluded that the heat resection rate would be excessive. Cavita-

tion suppression by means of a Set pump is much more a"fective; however,

the large pressure drops and resultant high set nozzle velocities might

give rise to a nozzle erosion problem that should be checked in endur-

ance tests.

Two basic boiler feed pumps were considered, the single stage

centrifugal pump and the electromagnetic pump with no moving parts. Two

drivers were considered for the centrifugal pump, a canned elettric motor

and a single-stage, partial-admie3lon impulse turbine. Several confipi l

-rations of electromagnetic pumps were reviewed, and the polyphase heli-

cal induction pump was choren for comparison with the centrifugal pumps.

Much of the information, on high-perfor=mance high-efficiency heli-

cal induction pumps was obtained from a series of General Electric

Company reports on electromagnetic pump design and development a_6 spon-

sored by NASA. Much of the information on the canned motor type pump

was obtained from Westinghc.:se Electric Corporation-' P 	The experience

at ORNL was used as a basis for the preliminary design of the free tur-

bine driven boiler feea pumps.10

For each pump considered, efforts were made to use the highest

practically attainable efficiency and the most advanced materials to

minimize " : weight of each unit. For example, many helical induction

//,-,,,Ajll
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'liable 1. Design Requirements for the Potass ium. tied Cesium
BoiLtr Feed Pumps in a 330 rwe fkntine Cycle Syctem

Potassium Cesium

Boiler outlet

Temperature,	 'P 2150 2150
Pros s are , pe i a 214.3 314.6
Enthal ry , Btu/lb 1230.5 320
Plow, lb/sec 2.21 8.79

Condenser outlet

Temperature, *F
1 330 1330

Pressure, psis 10.4 23.6
Enthalpy, Btu/1b 1049.6 274.2
Iu-.nsity,	 lb/fts 41.8 90.2
Low, gal/min 23.7 43.7

Min:arm AP

Boiler -to-condenser, psi	 203.9	 291.0

Centrifugal feed pump d^,ty

Plow, gal/min	 35.6	 60.5
Head, lb/in.	 234.58	 334.68
He-id, ft	 807	 534
Hydraulic power, kv	 3.63	 8.78

om feed pump duty

Flow, gal/min	 30.54	 52.94
Head, lb/in.'	 234.5	 334.6
Head, ft	 807	 534
Hydraulic power, kw	 3.12	 7.7

a Includes 15% for piping friction and hydraulic de-
coupling between boiler and boiler feed pump.

Assumptions:

1 gal /rin for each bearing (two bearings on turbine
feed pump, and four bearir.ae on turbine-generator).

25% of condensate flow added to centrifugal pump
flow for het pump to scavenge condenser and provide cavi-
tation suppression.

12% of ccndensate flow added to EM px:mp flow for het
pump to scavenge condenser and provide cavitation suppres-
sion.

•
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;amps with efficiencies of the order of 5% have operated in liquid metals

at elevated temperatures. More recent developments  indicate that heli-

cal induction pumps having efficiencies as high as 20% and specific

weights an Little as one-fifth of earlier potassium units Rre already in

fabrication and will soon be operated. The new higher efficiency and

lower weight values were used in the study. Similarly, several free tur-

bine driven piunps10 with overall efficiencies in the order of 5% and

weights in the order of 100 lb have been operated in potassium at ORNL.

The housings for these units were fabricated from solid forgings anti no

effort was made to minimize weight. By selecting closer to optimum tur-

bine wheel speeds and turbine nozzle velocities and by using reasonable

care in impeller design, overall efficiencies of over 30% can conserva-

tively be expected, and weights can be greatly reduced vithout sacrific-

ing structural integrity or performance. A single stage turbine was

operated in potassium in a bearing test rig at AiResearch, 11 and small

multi-stage impt• tse turbines were operated in mercury at Thompson-Ramo-

Wooldridge, 12 and Aerojet-General. 13 These turbines achieved efficien-

cies in the 50 to " range that was used for the turbine estimates in

this st,Ay.

SELECTION OF BOILER FEED R impeo

Electromagnetic Pumps

The helical induction pump (HIP) was selected as the best of the

electromagnetic pumps for boiler feed service in both the potassium

and the cesium cycles. Cross-sectional views of the preliminary designs

worked out for these pumps are shown in Figs. 1 and 2, while data on

their characteristics and performance are summarized in Table 2. The

advantages associated with the HIP include the following:

1. The pump is static, with no moving parts, bearings, or dynamic

seals.

2. Close tolerances are not required and differential thermal ex-

pansion is readily accommodated in the design.
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I

3. The pump is of rugged construction with simplified connections

and can be located in any desired orientation.
4. The system can be completely hermetically sealed.

5. Smooth flow control from zero to maximum can be obtained by

simple voltage control, by frequency control, or by a combination of

the two without the use cf high-temperature valves.

6. Simplified startup and standby procedures are obtainable from

power conditioning of battery output.

7. Plugging by oxides and particulate matter is practically im-

possible because flow passages are of the same order of size as the

system piping.

8. The pump cell can be made of a wide range of metals and alloys.

9. The pump characteristics are well-suited to parallel and/or

series operation with a single control.

10. The net pcsitive su;tion head (APSH) required is very low.

The disadvantages associated with this type of pump include the

following:

I. The basic helical induction pump is heavier and larger than

the free turbine pump or the canned rotor pump.

2. A separate control system and, in most cases, a separate power

conditioning system are required. These can be readily combined into

one system in some cases ?',14

3. A low power factor is associated with this type of p,-,?p.

4. The maximum efficiency is about 20%.

5. Overheating of the pump cell may occur unless corrective action

is taken when the flow is stopped or materially decreased.

6. Heat generated in the stator and other components re4uires that

the pump be cooled. In most cases a separate or auxiliary cooling sys-

tem is needed. While the cooling system may be used for several electro-

magnetic pumps with their associated controls as well as the generator

and its control system, the overall system weight, cost, and reliability

are adversely affected.
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Preliminary Design of Electromagnetic Boiler Feed Pumps

Electromagnetic pumpr, are divided into two general categories, in-

duction pumps and conduction pumps. F'urther subdivisions occur in each

category as shown in Fig- 3-
Conduction Pump. Studies? 5 indicated that the do conduction pump

was superior to the ac conduction pump and therefore the latter was

dropped from further con3ide ration. Although the do conduction pump is,

in general, lighter and more efficient than the induction pump it suffers

fr-3m certain disadvantages. The very high do current required ( typically

thou=sands of amperes at less than one volt) presents problems in both

ix)ver supply equipment and in the distribution of this current to and in-

to the pump cell. Separate cooling circuits may be required for the bus

bats and fr., the power supply equipment. These disadvantages may be over-

r!ome in some installations by proper location and design of the components.

However, the most significant disadvantages of the conduction type

of pump are the attachment of the heavy electrodes to the pump cell and

the resultant stresses caused by temperature gradients and physicPl re-

straints. Electrical losses also tend to cause a major heat removal pro-

blew. Because of these difficulties, the do conduction pump was not con-

sidered further in this report. Wherc an overall design (including all

components and effects) is to be carried out, it may be worthwhile to

rec ,insider the do conduction pump. A recent design of this type is dis-

cussed in Ref. l;.

Induction I'Lmps. Induction pumps may be classified as moving mag-

net or stationary magnet induction pumps. Stationary magnet induction

pumps may be single-phase or polyphase. Singlu phase induction pumps

are excited by an oscillating magnetic flux, and polyphase induction

pumps are excited by a traveling wave of magnetic flux. In principle,

moving magnet induction pumps differ from polyphase induction pumps 	 J

only in the means of excitation. Moving magnet induction pur.ps are 	 l

excited by the rotation of permanent magnets, or more likely, electro-

-magnets; whereas, polyphase induction pumps are excited by a traveling

wive of electromagnet's flux generated by the flow of alternating cur-
1

rent through stationary v'_ndings.

IN
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1. Moving Magnet Induction Pump. The electromagnet may use field

windings that are either stationary or wound around the poles of the

rotating structure. 16 11 	 Units employing stationary field vindings are

similar to those used in hosopolar (or inductor) induction alternators.

The field windings are toroidal in shape. A traveling flux wave is

produced by rotating a structure having the design number of salient

poles .

In unitb employing rotating field windings, field current may be

supplied via slip rings, or alternating power may be supplied to the

rotating element by induction and to the field via rectifiers mounted

on the rotating structure. The induction excitation system is now

casmcwdy used in conventional synchronous motors and generators.

This type of pump requires lower volt-ampere input and less volume

of active materials than polyphase induction pumps. However, it re-

ceived no further consideration because its inherent dependence on

heavy rotating machinery represents complexity compared to the HIP.

2. Stationary Magnet Induction Pumps. Stationary magnet induction

in„mpe may be single-phase or poly—phase.

Single Phase Induction Pump: The principle of operation and the

general arrangement of the single phase induction pump are described

in detail on pages 20-22 and 65-78 of Ref. 5. However, there has been

very little work reported on the single-phase pumps, and the lack of

experience in design, fabrication, and operation must eliminate the

single-phase pump from consideration for this application. Further,

this pump seems far better suited to high or medium flow at lower or

moderate head conditions.

Polyphase Induction Pumps: Ab shown in Fig. 3, polyphase induction

pumps are subdivided into the flat linear indiction pump (FLIP), annular

induction pump (AIP), helical induction pump (HIP), and spiral induction
a	

pumps (SIP). Descriptions and analyses of each type of pump are pro-

vided in Refs. 2--5.

The FLIP and AIP units a.e both best suited to moderate and high

flow, low pressure rise applications. The HIP and the SIP are best

suited to low flow, high pressure applications, but in almost every
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comparison, the HIP is sujerior to the SIP. Detailed discussions of the

application of these pumps are presented in Refs. 2 and 5.

Thu background for the above application rules can best be under-

stood by examination of the basic equation for induction pumps and of

the different pump cells used with the various pumps discussed in Refs.

1 and 4. For a given liquid metal at a given temperature, the pressure

developed in a pump duct per unit length is approximated by the equation:

Pic 0 2 ( V6 — V f )

where P is pressure, 9 is flux density, Vs is the velocity (synchronous)

of the magnetic wave, and V  is the velocity of the liquid metal (con-

sistent units must be used).

The flux density, 9, is limited by the core materials to a maximum

of 120,000 lines/in 2 and not by the type of pump. Bence, the maximum

value of this parameter car_ be considered a constant. The fluid velocity,

V f , is limited by hydraulic losses aid NPSH. The slip velocity, V s — Vf,

should be held within a narrow range around 0.5 
VS 

if the duct efficiency

is to be reasonably high (Refs. 2-5).

Consequently, the development of relatively high pressures will re-

quire relatively large lengths of pump duct. This can best be accom-

plished in the NIP, where the long duct lenW;h can be accommodated in

the helix. In order to accommodate long duct length within a reasonable

pump length, it is apparent that the cross-sectional area of the duct

flow passage must be reasonably small. Therefore, the flow should be

in the low range.

The cross-sectional area of the flow passage for FLIP and AIP units

can be :Wade relatively large and thus these pumps are suitable for mod-

erate to high flow applications. The development of high pressure in 	
J

these ^.:	 anwould require n unrealistic pump length.	 t

Descriptf-on of Selected Pump

The helical induction pump (HIP) was Selected for both the potassium

and the cesium cycles. These pumps are shown in Figs. 1 and 2, respec-

tively.
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Potassium Feed Pump. The design of the potassium pump follows

closely the design of the flight-type helical inductiG. pumps reported

in Refs. 6, 9, and 18. This latter pump, which represents the advanced

state of the art and is scheduled for completion in 1968, is designed to

develop 240 psi head at 3.25 lb/sec flow of potassium at 1000°F, and has
a weight of 382 lb.

A typical potassium feed pump duct material would be D43 alloy (Nb-10%

W-1} Zr-0.1%C) ar.d would have a variable pitch for the ft -at few helix

turns in order to accommodate a low NPS: A straight center return out-

let will be provided.

The stator will have a two-pole, 3 phase, 60 cps winding and will

operate in a hermetically sealed argon gas enclosure. Nickel-clad

silver conductor:; with inorganic insulation and Hiperco 27 laminations

with plasma-sprayed alumina coatings will be used for the stator wind-

irgr and core, respectively. The inner diameter of the stator lamina-

tions will be 64.1-in., and the outer diameter of the pump cell will be

3.8-in. nie stator can and several layers of 0.002-in.-thick tantalum
foil for reflective insulation will be located in the annulus between

the stator and the pump cell. NaK at 700°F maximum will be used as the

pump stator coolant.

The various pump characteristics and parameters are tabulated in

Table 2. Weight penalties are assigned in accordance with data pre-

sented on pages 99-110 of Ref. 5. Assumptions noted in this reference
have been used in the weight penalty calc--lations.

Cesium Feed Pump. The design of the cesium feed pump was performed

using recent potassium feed pump designEP ,$ as the points of departure.

1'hr effects of differences in volume flow rise, pressure rise, and

electrical conductivity were taken into account by using the curves shown

in Fig. 4. These curves are based on a parameter called the pump capa-

bility parameter (PCP), which is the product of the flow capacity (gpm),

head (psi), and resistivity (microhms-in.) of tLe pumped liquid metal at

operating temperatures. It has been shown  that this parameter can be

used as a reasonable guide to estimate the weight and size of electro-

magnetic pumpc .
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'"he following is quoted from pie 139 of Fief. 5:

The observed correlation of pump weight with puml•
capability parameter W be rationalised in the follow-
ing maruk:r. In a particular induction pumping configu-
ration with a magnetic field of fixed peak amplitude
moving at a fixed synchronous velocity, a conducting
fluid parsing through the pump duct at a fixed velocity
less th&n that of the may ing magnetic field experiences
a pressure rise inversely proportional to its electrical
resistivity. Accordingly, since the flow is the same
for all fluids for the assumed conditions, the product
of flaw rate, pressure, and electrical resistivity is
constant. Thus the pumping configuration has a capa-
bi' ty related to the product of pressure, flow, and
electrical resistivity. The weight of c pump, there-
fore, is a function of the parameter. This neglects
*significant variables such as fluid temperature, den-
sity, and viscosity. It ,should be employed carefully,
particularly in comparing pumps for fluids with widely
different characteristics or pumps designed for com-
pletely different applications or environments.

Extensive ORNL experience with Li, Na, NaK, and K is consistent

with this correiation.

Curves I s..,d II of Fig. 4 are based on pumps; actually built by

General Electric. Curves III and IV of Pig. 4 are based on studies

reported in Refs. 2--5. On the basis o: subsequent reports, 6P s Pus these

two curve:, are beyond th,• present state of the art, which for helical

induction pumps is represented by curve V. On the basis of personal

cc =anication with some of the authors of these reports, it is doubt-

ful that the values of curve V can be improved by as much as 20'x.

Curve VI is mother way of representing the data for curve V and shows

that the p!smp weight is proportional to PCP to the 0.656 power.

The PCP for the cesi um pump is 997,000 as shown in Table 2. This

value of PCP has been used with Curve V of Pig. 4. This operation gave

a value of the ordinate (pump veight/PrP x 10 -3 ) of 1.33, which in turn

yields a tentative pump weight ertimate of 1330 lb. However, additional

pump duct changes were required by the greater hydraulic friction pres-

sure drop with cesium compared to potassium under similar flow conditions.

This greater friction pressure drop is due to the tvo-fold increase in

density of cesium as compared to potassium and csused a 100 pound in-

crease in the Fumy weight.
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In view of the vital importance of the methods used to apply pump

design experience to the cesii= case, design of the cesium pump was

approached from a different angle by using the potassium feed pump de-

sign in Fig. 1 as the starting point and by analyzing specific items

in Table 2 as follows:

1. The increase in p-assure rise from 234.5 to 334.6 psi for

potassium and cesium, respectively, requires an increase in the length

of the helical passageway by a factor of 1.43, per se.

2. The increase in electrical resistivity from 21.6 to 56.3

microhms-in. for potassium and ,esium, respectively, requires an in-

creb►se i:a the length of the helical pasf,agevay by a factor of 2.6, per se.
3. The combination of items 1 and 2 would provide an overall in-

crease in t1ie required length of the helical pslssagevay by a factor of

3.72 (1.43 times 2.6) if no other parameter were changed.

4. To maintain the same fluid velocity, the increase in fl — from

30.54 to 52.94 gpm requires an increase in cross-sectional a-.-ea of the

duct passageway by a factor of 1.73. However, this would result in an

intolerable increase of approximately 50% in the hydraulic. friction

pressure drop per unit length of the duct passageway. Su,^L an increase

would result in an extremely steep slope of the pressure-Flow charac-

teristic curve for the cesium feed pump. This would be d,., to the more

than twofold increase in density, whereas the equivalent diameter would

be increased only by a factor of 1.31 (approximately the square root of

1.73, the change in flow). This can be seen by an analysis of the

hydraulic friction pressure drop equation:

6P = f D 
2? 

10	
(in psi units)

e g

where
	

De = 
b2bcc	

= equivalent diameter

with b and c being the dimensions of the rectangular duct passageway.

Tre Internal friction pressure drop for the cesium pump can be allowed

__ be the same percentage of the developed pressure rise as used in the
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design of the potassium pump. This will result in a fluid velocity of

approximately 20 ft/sec for the cesium pump.

Overall analysis of slip, synchronous velocity (Vs ), and frequency

resulted in fixing the frequency at 22 cps, the slip at 53x, the pump
yell outside diameter at 8-in., and the length of the stator punchings

at 18-ia. Such a design will be very close to optimum for the appli-

cation. The pump dimensions and veight are shown in Fig. 2, and pertinent

operating conditions are shown in Table 2.

In designing any electromagnetic pump, the problems and relations

are quite complex. In preparin-, this section it seemed best to refer

the reader to Ref. 5 rather than to attempt a repetition of that excel-

lent presentation on which the work here is based. It is felt that the

cesium pump as designed is within 1C4 by weight and dimensions of the

optimum design using present state of the art. Computer analysis of

this pump design could result in optimizing such parameters as fluid

velocity, duct wall thickness, and slip.

Electric Motor-Driven (Canned Rotor) Pumps

The canned rotor pumps designed for the potassium and the cesium

boiler feed applications are shown in Figs- 5 and 5, respectively. The

pump characteristics are shown in Ta:rle 3. The motors are 4 pole, 400

cps, 12,000 rpm motors having metallic liners (cans) between the stator

and rotor.

The main advantages of the canned rotor pump compared to the electro-

	

at	 magnetic pump are relatively low weight, moderate efficiency, and high

power factor. Plow control may be obtained by using a variable frequency

cycloconverter-e or by using a throttling valve. One disadvantage of the
	

i

canned rotor pump is that, in general, it requires a separate cooling

	

k
	 sybtem for the stator. The temperature of the pumped liquid should be

4

lower than the Curie point of the magnetic material used in the rotor

laminations in order to provide a reasonably simple method for cooling

	

i

	 the rotor. Additionally, being a rotating machine, the canned rotor

depends on liquid metal lubricated bearings and requires a higher NPSH

that the HIP.



19

FY

►.
O
u
O
aG

C
C
N ^u .1

w O
t ^D

w u
o t

co

00 N
—4 3
v G.
A S

>. a

as
C
-^ C
E O

^ y►. u
C14 ^+

t 0.
u •C

w 'b
O OJ

C C1.
O

u a
v .^

cn O
uo

m E
o ^
w .^
^ w

w
cc

• u
L U

0.

00 ►.
-+ O
La. w

Q.

E

CL.

Q

N
r-/

A Jr/ v/

^C nt

r

3
0
JZ
ac

O

u

v

•
p



b
•	 c
.4	 ^.
r

(n .a
v

^ v
^ a

0
o•

N
m
0

6

30
Z
oc

0

t
i

c

c

y
t2
F
O

C

20

v
• .o
c .^
c
N J
U n
N

V
t u
u t
M

w ^
O V

31
C
0o a
-+ E

u a.
A

►^ C
O

^+ u
E ^
-+ u

d -^
^ a
a a

a^L bu ty
V

w La.

O

f : Y
r
u p
u ao
a
^ E

O

4 a
0 0
►+ U
U

J
.w

^O a. E
ora ^

w
0
u
O
oL



21

Table 3. Characteristics r f Electric Motor -Driven (Canned Rotor)
Pumps for the Potassium and Cesium Boller Feed Requirements

Potassium Cesium	 Remarks

1. Flaw, lb/sec 3.32 12.1

2. Flow, gpm 35.6 60.5
3. Head, pei 234.3 334.6

4. Head, ft 807 534

5. Temperature, * F 1330 1330

6. Density, lb/ft 7, 41.8 90.2

7. Pump output, kv 3.63 8.78

8. Pump potential, volts <4o0 <400

9. lOPSH required, ft 19 27

10. Pump power frequency, cps 400 400

11. Pump speed, rpni 12,000 12,000

12. Pump power input, kw 12.1 27.4

13. Rump efficiency, 30 32

14. Pump input, kva 14.2 32.3

15. Pump P.F., % 85 85

16. Pump reactive input, kvar 7.5 11

1'T. Base pump weight, lb 160 274

18. Consumed power,
weight penalty, lb 121 274 (10 lb/kv	 - Item 12)

19. Power conditioning,
weight penalty, lb 12 27 (1 lb/kv	 - Item 12)

20. Cooling equipment,
weight penalty, lb 18 41 (1.5 lb/kv	 - Item 12)

21. Reactive power
weight penalty, lb 6 13 (0.75 lb/kyar-Item 16)

22. Rump weight +
weight penalties, lb 317 629
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Preliminary Design of Electric Motor Driven (Canned Rotor)
Boiler Feed Pumps

The canned rotor pump units considered for these applications were

of conventional design using metallic bore liners (for the inside of the

motor stator). The state-of-the-art for ceramic bore liners was not

considered satisfactory to warrant their use for either the potassium or

cesium pump. The pump rotary assembly consists of a centrifugal pump

impeller, squirrel cage rotor, and bearings mounted on a single shaft.

The squirrel cage rotor is covered by a 0.015-in. thick can made of D43

alloy (Mb-10% W--1% Zr-0.1% C). Whenever practical, all wetted parts of

the pump other than bearings are to be fabricated from D43 alloy.

The design of the motor is discussed in general terms in fief. 8.
A silicon-iron alloy is to be used for the stator and rotor laminations,

where the maximum tem perature of the iron is to be less than 800'F.

Laminations are to be coated with plasma sprayed alumina 1 to 2 mils

thick. heat generated in the motor is removed by liquid metal circu-

lated through the rotor cavity and the stator cooling passages.

The motor windings are to be fabricated from nickel coated silver

and insulated with double served glass .9 This design will alloy for

operation at winding temperatures up to 1000°F. Slot insulation and

wedges are to be high purity (99.5%) alumina shapes.
The design of the impeller and casing is similar to that for the

free turbine pump operating at the same shaft speed. Det pd led bearing

designs were not made for either the potassium or the cesium feed pumps,

but bearing losses were accounted for in the overall pump efficiency.

the limiting speed reported in a parametric study m was the maximum

rotor speed considered. There is little reported work in this field at

higher speeds. Higher speeds might be feasible, but complex stress

analysis of the rotor can and rotor punchings would be required.

Potassium Feed Pump. Three speeds were investigated and resulted

in the following:
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ne

or

No. Weight
rpm	 Frequency of (lb) 

Poles

3600	 60 2 590
8000	 400 6 210

12000	 400 4 160

PU f

The efficiency of each pump unit was approximately the same, any

there was no gross change in power factor. Consequently, the 4 -pole,

400 cps (12,000 rpm) design was selected on a weight basis.

A 2-pole, 200 cps configuration was also investigated, but yielded

a larger and less efficient pump than a 4-pole unit at the same speed.

Cesium Feed Pump. Three speeds were investigated and resulted in

the following:

No.	 Weight
rpm	 Frequency	 of	

(lb)
Poles

P s

3600 Fo 2 910

8000 400 6 350

12000 400 4 274

The 4-pole, 400 cps (12,000 rpm) unit was again selected for -the

same reasons given for the potassium feed pump.

Free Turbine -Driven Pumps

Progress in liquid metal lubricated bearing technology in recent

years makes it feasible to consider seriously the free turbine driven

boiler feed pump for cesium and potassium Rankine cycle systems. Single

stage relatively high-speed turbines permit low-vapor flow rates, small

impellers, and compact, light-weight units. The use of the r mtped fluid
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as the bearing lubricant provides simplicity and reliability of supply

by eliminating the need for external auxiliary pumps and cooling cir-

cuitry. :'several manufacturersl9170 have recognized the advantages of

the steam turbine driven pump with the bearings lubricated by the pumped

condensate for high-pressure, moderate-flow, conventional marine and

industrial boiler feed p<<mp applications. Several free turbine pumps

have been operated in potassium systems at ORNL for more than 83" hr

and have demonstrated basic stability and simplicity of start-up and

control.

Materials specified include D43 alloy (Nb-10% W-l% ?.r-0.1% 0 for
the housing and WX alloy (Mo-0.5¢ Ti-0.Of)% 7.r) for the turbine wheel

and pump impeller. Titanium carbide with columbium binder appears to

be a good choice for bearings and jmm-nals. Turbine pump shaft speeds

of 12,000, 16,000, and 20,000 rpm were c ons i de red .

The pertinent aerothermodynamic design parameters for the turbines

and the hydraulic design parameters for the centrifugal pump impellers

-sere calculated, and approximate dimensions and weights of the fret tur-

bine driven boiler feed pumps were deduced. Cross-sections of the pre-

liminary designs of three turbine driven pumps are shown in rigs. 7, 8,
and 9. Comparisons between the PIP and the free turbine driven pumps

were made on a paver requirement basis and on weight and weight penalty

bases.

Preliminary Design. of Free Turbine Driven Boiler Feed Pumps

Turbine. The high pressure of the vapor available for driving the

boiler feed turbine made it necessary to consider several pressure

ratios and arrangements for installing the pump drive turbine in the

Rankine cycle. Figure 10 shows the boiler feed turbine as a topping

turbine in series with the power turbine. This arrangement utilizes

high density vapor at the full flea+ of the power turbine with a very

small pressure drop across the boiler feed turbine. This implies a

very low speed and very large pump impeller. There are many undesirable

features inherf.nt in this scheme. The control of either turbine directly

affects the control of the other. The boiler feed turbine wheel ii, at

4"
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ORNI DWG. 68-2474

Fig. 7. Cross Section of the Preliminary Design of the Free Turbine-
Driven Puwp for Potassium Boiler Feed Application. Shaft speed, rpm —
12,000; Turbine wheel diam, in. — 12.0; Impeller diam, in. — 4.7; Turbine-
pump weight, lb -- 147.
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Fig. 8. Cross Section of the Preliminary Design of the Free Turbine-

Driven Pump for Cesium Boiler Feed Application. Shaft speed, rpm — 12,000;

Turbine wheel diem, in. — 8.6; Impeller diem, in. — 4.1; Turbine-pump

weight, lb — 85.
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ORNL DWG. 68-2492

Fig. 9. Cross Section of the Preliminary Design of the Free Turbine-

Driven Pump for Cesium Boiler Feed Applic4tion. Shaft speed, rpm — 20,000;

Turbine wheel diam, in. — 5.5; Impeller diam, in. — 2.6; Turbine-pump

weight, lb — 35.

--
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ORWI DWG. W2493

fig. 10. boiler Peed Turbine Pump as Topping Turbine in Ser
Tower Turbine.

14
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high-temperature so that a high-temperature gradient exists between the

pump and turbine.

Figure 11 shows an arrangement in vh'-.h the boiler feed turbine

vapor flow is parallel to that of the power turbine. This arrangement

is attractive since it provides essentially independent control of the

feed turbine and the power turbine; the exhtust vapor is at very lcw

moisture content, and the turbine wheel efficiency is relatively high.

riowever, a single stage turbine can efficiently utilize only a portion

of the pressure drop available in this arrangement. The turbine inlet

pressure could be reduced by throttling at the cost of decreased availa-

bility of heat energy , an undesirable apprcach.

Figure 12 shows the vapor supplied to the boiler feed turbine from

a stage bleed of the power turbine after full-flov moisture separation.

This arrangement avoide the throttling loss shown in Fig. 11. The

arrangement of Fig. 12 gives high turbine wheel efficiencies for single-

stage turbines by permitting an optimization of the nozzle velocity and

wheel speed. The vapor -+oisture content at the turbine exhaust is

higher than in the parallel arrangement of Fig. 11.

Table 4 compares the pump power requirements, expressed as generator

requirement in kilowatts, for the two arrangements of the turbine driven

boiler feed pumps shc:m in Fig. 11 and 12 to that for the helical in-

dution electromagnetic pump. Note that even though the turbine vapor

flow rate i s lower for the arallel arrangement, Fig. il, the equiva-

lent generator capacity for potassium is roughly triple and for

cesium is approximately double that for the bleed turbine arrangement,

Fig. 12. TY's results mainly from the higher availability of energy in

the vapor at the turbine inlet conditions associated with the parallel

arrangement. The arrangement shown in Fig. 12 was adopted and single-

Itage turbine wheels we-e sized for 12,000, 16,000, and 20,000 rpm for

both potassium and cesium to supp l - the boiler feed duty listed in 1%bl(: 1.

Table 5 lists the pertinent aerothermodynamic parameters for the potas-

sium drive turbines, and Table 6 presents comparable Bata for the cesium
drive turbines. The turbine outptit requirements are based on impeller

input power and bearing and windage losses. Note that a mechanical
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moisture separator is used to raise the quality of the bleu vapor. The

first three lines on Tables 5 and 6 do not include moisture loss. Lines

three thru six in these two •.aol,;: i nclude moisture loss based on 1.25%

1-As in turbine po%mr for ee ch percent moisture at the turbine exhaust.

At the higher speeds the net positive suction head (RPSH) require-

ment for the cesium impeller was higher than could be met with the ,Jet

Pump flow assumed in Table 1. The last two horizontal lines in Table 6

show the effect on turbine vapor flow rate when the pump capacity is in-

creased at 16,000 and 20,000 rpm to satisfy increased ,Jet pump flow re-

quirements. (See section entitled "Centrifugal Pump Impeller" for fur-

ther discussion.)

The turbine efficiercies and wheel dimensions were determined by

means of 11
s	 s
— D diagram-0 1 for single-stage, partial-admission impulse

turbines (see Pig. 13). The enthalpy-entropy diagrams for the potassium

and cesium boiler feed turbines and also fo: the generator drive turbines

are shown in Pigs. 14 and 15, respectively.

Centrifugal Pimp Impeller. Table 7 presents the hydraulic design

para.-aeters as functions of shaft speed for several centrifugal pump im-

pellers suitable for the potassium and cesium boiler feed applications

and also the characteristics of the booster ,Jet pumps and the power re-

quirements of the impeller, ,Jet pump, and bearings and the windage. Twc

important impeller parameters are the diameter and the NPSH requirement,

that is, the pump inlet total pressure above the vapor pressure of the

liquid. A ,Jet pump will be required to scavenge the condenser and to

provide the NPSH requirement for the centrifugal pumps. A lower capacity

jet hump will be required to scavenge the condenser and provide NPSH for

the electromagnetic pumps. As noted in Table 1, it was assumed that the•

flow through the ,Jet pump nozzle would be 25% and 12° of the actual con-

densate flow for the centrifugal and the HIP pumps, respectively. How-

ever, the 16,000 anc: 20,000 rpm cesium pump designs required more ,Jet

pump flow than assumed to provide the required NPSH. The last two

horizontal columns in Table 6 show the increase in cesium turbine output

required to provide the increased flow needed to accommodate the higher

KPSH requiremwnt .

00
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Figures 16 and 17 show that the RPSH requirement increases almost

linearly witn speed. The relatively high vapor pressure of the conden-

sate at 1330°F indicates that it might be practical to provide NPSH with

subcooling. Figures If, aid 17 show the subcooling requirements as func-

tions of pL=p speed and NPbH. Since cesium has roughly twice the vapor

pressure and leas than a third of the specific heat capacity of potassi,un,

subcooling would appear scxnewhat more effective for cesium. However, the

much higher mass flow rate and UPSH pressure requirement fir cesilun lead

to considerably larger cooling loads. For example, at 12,000 rpm. 114 kw

and 60 kw subcooling would be required with cesium and potassium, respec-

tively, to provide the requisite NPSH without recourse to a ,het pump.

Pump efficiencies, impeller diameters, and NPSH requirements were

computed based on the pertinent information contained in Refs. 24-26.

Bearing Loss , — A detailed bearing design study was not carried

out for the turbine driven feed pumps. Instead, the friction losses In

the ,journal and thrust bearings, as presented in Table 8, were calculated

assuming hydrodynamic lubrication and bearing dimensions of 1 1/4-in.-diam

by 1-in.-long with a diametral clearance of 2 mil.

Similarly sized journal bearings have been operated stably in potas-

siuria 1 at higher speeds than contemplated here; thus it appears reasonable

to assume that a stable bearing, can be designed fcr these conditions.

Journal bearing friction losses were calculated usinj, power loss equations

in Ref. 27, and the resulL^, agreed with data in Refs. 28 and 29.

The thrust load is a functicn of the pressure differential between

the pump inlet and the turbine cavity, the unbalanced hydraulic forces

on the pump impeller, plus the axial force component from the turbine

nozzles. Development tests with free turbine driven pumps at ORNL?° pro-

vided experimental evidence that the value of the thrust force imposed by

impeller hydraulic unbalance can be controlled. The NPSH values listed

in Table 7 show that the greatest pressure differential between the tur-

bine cavity and the pump inlet occurs for the 20,000 rpm cesium case, and

would result in a thrust force of the order of 30 lb acting to move the

shaft toward the turbine end of the unit. Assuming a thrust load of 30 lb

and a 5 psi loading gave 1 1/4-in.-ID by 3-in.-OD dimension for the thrust

1

t ____
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bearing. Since the NPSH requirement and developed pressures are lower

for potassium, it is likely that the assumed thrust loading is very

conservative for potassium.

The power absorbed by the thrust. bearing varies approximately with

the thrust load and the area of the thrust face and was calculated on

the bass: 3f experimental data on NaK lubricated thrust bearings. 30

These data cor.--!lated well vlth the results of thrust bearing tests in

water a 1

The power required by the journal and thrust bearings is given in

Table 8. In determining the power output required from the turbine

wheel the sum of the losses for two journals and one thrust bearing was

increaLed to double the values shown in Table 8, to compensate for the

high values of the bearing Reynolds numbers, all of which are above the

critical value.

Windage Loss and Disk Friction. The di O. friction and windage loss

for the partial admission, single-stage, turbine wheel were calculated

according to Sternlicht2' and are listed in Table 8. The loss is in-

versely proportional to the specific volume of the exhaust vapor so

that the denser cesium vapor has larger friction losses.

COMPARISON OF BOILER FEED PUMP:-:)

Pump Weights and Weight Penalties

The three boiler feed pump* fer potassium and cesitn are compared

In Table 9 on the bases of (1) the weight of the basic pump, (2) a

weight penalty for the electrical power consumed by the pump, and (3)
1

the weight penalties for the auxiliaries required to provide pump con-

trol, cooling, power conditioning, and start-up. For the free turbine

driven pump, the equivalent electrical power that could have been gen-

erated with the vap4r that must be diverted to the drive turbine was

used to compute the electrical power penalty. A weight penalty was

also assessed for the batteries required to start up the helical in-

duction and the canned rotor p-umps. Table 10 presents a comparis o n of

battery systems. No attempt was made to compare the pumps on a cost bftsia. 	 ^
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Uncertainty exists about the value of the weight penalty that should

be assigned to the electrical power consumed by the pumps. An earlier

studys used a weight penalty of 10 lb/kw. A typical Rankine cycle sys-

tem with an electrical output of 330 kwe may weigh in the order of

8500 lb, that is, 26 lb/kw without shielding. ^'he 10 lb/kv value was

used, but the rankJng of the pumps as presented in Table 9 is the same

for either value of the pump power weight penalty. The helical induc-

tion pump has both the largest basic pump weight and the largest sum of

weight penalties, while the free turbine driven pump has the lowest

values for these two parameters. The canned rotor pump ranks about mid-

way between the other two.

The canned rotor p,.:mp appears to be inherently the most complex,

because it requires both the liquid metal lubricated bearings needed

with the free turbine driven pump and the power s^.pply, control, and

conditioning, heat removal and battery start-up systems needed with the

helical induction pump.

Special Problems

Variable Frequency Control and Start-up of
Electromagnetic and Canned Rotor Pumps

A variable frequency sys^em can provide imooth, stepless control

for either the helical induction or the canned rotor pumps and should

be suitable for All anticipated operational conditions. Stepless con-

trol can be provided by a cycloconverter, a frequency step-down device,

that can be supplied from the high frequency (of the order of 1000 to

30OG cps) bus of the system turbine-generator. The cycloconverter is

comprised of a number of solid state switches (probably silicon-controlled

rectifier units) connected between the pcver system and the pump as shown

in Fig. 19. Logic circuitry based on pertinent parameters will be used

to control the output frequency and voltage which in turn control pump

performance	 Additional information on the system is given in Refs. 9

and 14.

A step-dawn transformer between the power supply and the cyclocon-

verter will be needed if the generator voltage is greater than 400 volts.
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It was assumed that the size of this transformer will be sufficient to

take care of all low voltage loads. An additional weight penalty of

2 lb/kw for a generator frequency of 1000 cps  must be assessed against

both the helical induction and the canned-rotor pumps if this transformer

to re qu i red .

Power for the startup of the helical induction p mp and the canned

rotor pump was assumed to be supplied by a battery system. The do out-

put of the battery would be changed with a suitable solid state inverter

to three - phase ac at about the same frequency as the normal output of

the system turbine generator. 711he output of the inverter would be con-

nected to the input (high frequency) of the cycloconverter frequency

divider ured for the steady - state control of these pumps.

Control of Free Turbine-Driven Boiler Feed dumps

Bo.ler Feed Turbine in Parallel with the Power Turbine. A flow sche-

matic of the feed pump installed in the parallel arrangement is rhown in

Fig. 11. Some of the methods of matching pump flow -rate to the flow re-

quirements of the Rankine cycle system include ( 1) throttling the vapor

flow at the turbine inlet, (2) throttling the pump flow, and (3) using

cavitation control at the feed pump inlet to provide the proper flaw-rate

cnd to maintain the proper distribution of liquid inventory in the system

without throttling either the vapor or the liquid flow streams.

The various methods of flow control have differing influences on the

coupling ' rtween the pump and the power turbines. The vapc,r flow-rate to

the pomp drive turbine is less than 10% of that to the power turbine;

therefore throttling the vapor flow at the inlet to the pump drive tur-

bine should have small influence on the performance of the power turbine.

Throttling the pump fl--w rate should have only a small effect on the speed

of the feed pump and little or no effect on the performance of the power

turbine. The influence of cavitation control on the coupling is discussed

below.

The cavitation control method depends primarily 0 upon a mismatch be-

tween the non-cavitating capacity of the feed pump and the flow require-

ments of the Rankine cycle system, that is, the pump operates at slightly,

higher speed than n^-ek^ssary. The non-cavitatiog capacity is higher than

r'

f_1
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the requirement, so the pump op!rates in a regime of cavitation to supply

'.he )recL'se system requirement. the control method will function properly

over whatever power range the no«-cavitatiog capacity of the feed pump ex-

ceeds the system requirem-nts.

In tests with simulated Rankine cycle systems at ORNL in which the

power turbine wRz simulated by a fixed vapor flow resistance, the cavi-

tation control was operable over the power range from 25 to 100% of the

design value. Throughout the range there was no need to throttle either

the vapor or the liquid flow streams. The flow resistances must be set

initially to the proper values. TtAez- tests were cc-nductc3 in both water

and potassium systems of 360 kw boiler capacit; .

The parallel arrangement of pump and simulated power turbine has

been used repeatedly to perform the boot-strap start-up of a 360 kw

water Rankine cycle system without the use of any auxiliary system.

Boiler Peed Turbine Pump Supplied with Interst.age Bleed Vapor

from the Power Turbine. The flow schematic of a feed pump turbine sup-

plied with vapor bled from the power turbine is shown in Fig. 12. This

pump arrangement was adopted for the comparison because it provided the

mast efficient use of working fluid vapor of the three arrangements con-

sidered. We have had no test experience vith this pump arrangement in

the ORNL simulated Rankine cycle systems, but believe that it should be

amenable to the same control methods used with the parallel arrangement

described in the preceding section. Those methods include (1) throttling

the vapor flow at the turbine inlet, (2) throttling the pump flow, and

(3) using cavitation control at t:e feed pump inlet.

There is somewhat more coupling between the pump drive turbine and

the power turbine in the bleed vapor arrangement than with the parallel

arrangement. At Rill-power the vapor flow-rate to the feed pump turbine

is less than 10% of that through the power turbine; therefore, one would

expect. changes of as Bauch as 10% in the vapor flow-rate to the feed pump

turbine to have little effect on the performance of the power turbine.

Throttling the pump flow should have little er no effect on power turbine

performance. Precise control of flow-rate matching and the distribution

of 6ystem liquid inventory can be obtained with the cavitation method of

a
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contrc.&, but the power range carer which it is effective vithout the use

of throttling may be smaller than for the pfsrallel r.: rar, 4gement .

To provide for operation at lcv bystem power and for boot-strap

sti-t-up Of the system, it is necessary to utilise the :wo vapor valves

and the bypass line direct from the boiler to a separate nozzle block

iru zlled in the feed pump turbine sh rnm in Fig. 12.

Bearing Materials

The operational reliability of the liquid metal lubricated bearings

which support and position the rotating elements in the power turbine

and its associated electrical generator may well detemine the useful

life of the Rankine cycle system in a space power application.

Hydrodynamic bearings, lubricated with liquid potassium at tempera-

tures to 1G40'F, have been used to support and position the rotating ele-

ment of free turbine driven boiler feed pumps operated in simulated Rankine

cycle syste-- at ORNL and more than 8,000 hr of turbine running time has

accumulated in these system . A typical turbine pump unit used in these

systems and shown in Fig. 19 is described in Ref. 10. The bearings were

initially made of tungsten carbide with 12% cobalt binder, which compo-

sition vas subsequently changed to tungsten carbide with 6% cobalt binder.

There is some question about the use of either of these bearing materials

at the condensate temperature of 1330°F considered in this report or for

any temperature above about 1200°F.

A materials program for potassium lubricated journal bearings has

been conducted by R. G. Frank et al at General Electric- 7,vendale under

contract to NASA.ss ' s` The results of the program indicate that titanium

carbide with 10% columbium binder is a good candicate for both journals

and bearings.. The material reportedly has good c,m tibility with tas-^	 Po	 Y	 g	 Pa	 p°	
^

sium up to 1600°F in columbium, tantalum, and tungsten base alloys and

also has good general bearing properties. The primary problem with the

material appears to be the exercise of appropriate quality control dur-

ing the fabrication processes.

IF
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FRELIXINARY DESIGN OF ELECTROMAGNETIC PUMPS
FOR THE REACTOR COOLANT AND HEAT REJECTION SYSTEMS

The lithium and NaK working fluids, respectively, in the reactor

coolant and heat rejection systems of the reference space power systems

of Ref. I t are used in the liquid phase only. A brief study of the

application of the free turbine driven pump to these systems indicated

that it would lead to increased problems and unwanted complexity. Sup-

plying potassium vapor to the lithium and NaK turbines from the Rankine

cycle system would give rise to unwonted communication among the three

systems or to severe shaft sealing problems. Boiling lithium or NaK to

provide vapor for turbines would require individual boiling and condens-

ing capabilities and lead to significant increases in system complexity

and probably to increases in weight compared to the electromagnetic pump.

The flat linear induction pump (FLIP) and the annular induction

pump (AIP) were selected to pump the lithium and NaK, respectively, for

reasons noted below. The preliminary designs of the pumps are shown in

cross-section in Figs. 20 and 21, and their performance characteristics

are shown in Table 11. The relatively high NPSH requirements are caused

mainly by the relatively high duct velocities of 30 and 40 ft/sec that

were used.

Lithium Pump for the Reactor Coolant System

The high flow, low head (374 gpm at 20 psi) requirements of this

pump are suited to either the annular induction pump (AIP) and the flat

linear induction pump (FLIP). The FLIP in which all the magnetic cir-

cuit is readily accessible for cooling is particularly well suited to

this application where the liquid temperature is 2200°F. The use of

the annular induction pump would require separate liquid metal cooling

of the inner core to maintain its temperature below the Curie tempera-

ture.

The design of the flat linear induction pump for this service is

similar to that of the pump discussed on pages 133-135 and 234 of Ref. 5.
The pump duct is made of D43 alloy and is approximately 0.75 -in. by 6 -in.
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by 36-in. long. The fluid velocity is 30 ft/sec at design flow. lNie

inlet and outlet lines are 3-in. -diem tubes at rig`t angles to the pump

duct. These lines connect to the f i.ow transition sections which are

offset cones. A cross section of thv pump is ahovn in Fig. 20.

71,e pump duct iz nu mechanically connected to the stater but is

supported by the thermal insulation which protects the btatc: from high

duct temperatures. Duct guides are required to limit the lateral dis-

placement. Thermal ine ,ilation consists of layers of tantalum cloth and

strip with an overall depth of 0.15 -in. The outer layers of insulation

can be austenitic stainless steel.

The stator consists of two identical stator assemblies held together

by modified I-beams located at 9-in. intervals along the Length of the
duct. A NaK coolant jac%et covers the outer surface of the hermetically

sealed stator can. This stator can is a metall! r envelope containing

approximately one atmosphere of nitrogen. Nickel-clad silver conductors

with inorganic insulation and Hiperco 27 laminationb with plasma-.;prayed

alumina coatings are used for the stator windings and core, respectively.

The stator is 6 pole, 3 phase, 100 cps.

NaK Pump for the Heat Rejection System

The operational requirements for this pump, Fig. 21, are very simi-

lar to those for a similar pump whose design is covered in pages 123--128

of Ref. 5, in which the annular induction pump was a narrow choice over

the helical induction pump. The margin is larger for the NaK circuit

pumps since the higher flow, approximately twice that of the pump in

Ref. 5, !.s more suited to the annular induction pump. The weight and

dimensions of the pump were determined in part from curve V in Fig. 4,

and in part from an analytical extrapolation of the Ref. 5 pump to the

requirement of the heat refection circuit. The efficiency and power

factor were changed to agree with present day state of the art.

The pump duct and all other NaK wetted parts of the pump may be

fabricated from an austenitic stainleas steel. The inner core is an

assembly of axially oriented square wires of cobalt Iron alloy. This
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core i&. encased Im the stainless steel and is supported by four radial

supi,ort vwieb at each. end of the pum p cell. The Annular Clw passaKe

between the t rwm , core and the pump duct. has a rad 1 al d 1 wens i on of

0.173 - in. Pl.iid v.tloeLty in the annulus is approxiaottely 40 ft ps:
second at deh 4Vu conditions. ?be pump duct is supported within the
stator by the 5u-ail -*.hick then &1 L mulation ce"Isting of alternate
layers of nuutenitte stainless steel cloth and strip that L. laminated
to reduce "idy current loss.

The stotar is 2 pole, 3 phase, 200 cpc and uses W (700 `F masia )

in the coaling ,packet. The stator cavity is hermetically sealed and is

filled with cam: atmosphere of nitrogen. Nickel-clad silver corAuctors

with inorganic insulation and Hiperco 27 laminations with plasm-sprayed

alumina coatings are used for the s tator windings and c ore , respectively.
Electrical power to the stator  i supplied through three hermetically
sealed cerasic-to -metal electrodes located at one end of the stator
cavity.

CI NCI.US I Ol6

1. Of the several variations of the electromagne' :c pump considered
for the boiler feed applications, the polyphase helical induction pump

(HIP) , • chosen as having the most desirable featurer..
2. When compared to potassium, the use of cesium as the Rankine

cycle working fluid requires much heavier boiler feed pt:mpb as shown by

weight (lb):

^-	 cesium	 Potassium

Pump Kind	
Basic	

Total	 Total
Pump Plus	 Basic Pump Plus

Pump	
Penalty	

Pump	
Penalty

Helical induction polyphase 14 30 2292 397 660

Canned rotor centrifugal 274 69-( 160 347

Free turbine driven centrifugal j7 174 72 135

IMMOMMOMM,M 	
_

W

I
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j. When compared for either the cesium or Potassium toiler feed

applications, the helical induction pumr is the hecfiest, the free tur-

bine driven pua,p is the lightest, and the canned rotor pump is inter-

mediate in weight.

4. The helical induction pulp which nap Go moving parts can be
designed to be relatively free of thermal stresses. However, it requires

an electrical pcwer supply, electrical svitchgear and control equipment,

auxiliary cooling equipment, a_nd starting batteries.

5. Although the free turbine driven pump requires no electrical

power supply And little or no auxiliary equipment, it depends upon mov-

ing *.parts and liquid metal lubricated bearinfa . Development tests will
be required to prove the bearing materials selection, and th •?b reliable

and stable operation of the bearings.

6. The canned rotor pump re quires liquid metal lubricated bearings,

sisiilux to those used in the free turbine driven puml,, and the electrical
power supply, electrical equipment, auxiliary cooling equipment and start-

ing batteries, similar to those used in the helical induction pump. Thus,

although the canned rotor pump is intermediate in weight, it is the moot

complex of the three boiler feed pumps considered.

7. Of the various arrarg-ments for incorporating free turbine driven

feed pumps in a Rankine cycle system, the parallel arrangement of the

power and feed pump turbines shown in rig. 11 provides the largest de-

coupling of the effects of a change in the operating conditionrs of the

pump drive turbine on the performance of the power turbine. The stage

bleed arrangement shown in Fig. 12 provides somewhat closer coupling than

'.he parallel arrangement but yields the minimum system weight for any

boiler feed pump (30 to 40% below the weight for the parallel arrangement).

8. The higher density of the cesiva and the higher specific speed

for the cesium pump lead to a higher net positive suction head pressure

requirement (RPSH) for the cesium than for the potassium centrifugal pump.

9. Subcooling the condensate imposes a larger weight penalty than

the use of jet pumps to provide the net positive suction head requirement.

Howe -►er, the ,jet pumps utilize high nozzle velocities that may require

special design; to avoid erosion.

^J
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10. Cavitation at the inlet to the centrifugal pump provides an

ezc!llent control method for matching the capacity of the feed pump to

the Rankine cycle requirs nt and for controlling the distribution cf

liquid metal inventory in the system. This control method has been used

with free turbine driven boiler feed pumps during more than 5,000 hr of

test operation in sinn:lated Rankine cycle systems at OMM (2,704 hr on

a single pump unit) with no visual evidence of cavitation damage to an

impeller.

i

E
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